MTAG: Modal-Temporal Attention Graph for Unaligned Human Multimodal Language Sequences

Jianing Yang, Yongxin Wang, Ruitao Yi, Yuying Zhu, Azaan Rehman, Amir Zadeh, Soujanya Poria, Louis-Philippe Morency

Presentation Outline

- Motivation: Challenges in multimodal language learning
- Method
- Datasets
- Results
- Analysis
- Applications

• Data that is *sequential* and recorded in *multiple* channels

- Data that is *sequential* and recorded in *multiple* channels
- Examples:
 - Video

- Data that is *sequential* and recorded in *multiple* channels
- Examples:
 - Video
 - Healthcare: Vital signals

- Data that is *sequential* and recorded in *multiple* channels
- Examples:
 - Video
 - Healthcare: Vital signals
 - Autonomous vehicles

Why do we care about multimodal sequence?

Why do we care about multimodal sequence?

Abundant data

Why do we care about multimodal sequence?

Sentiment Analysis

Positive Negative

Neutral

Disease prediction

Emotion detection

Diverse applications

YouTube

Abundant data

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

Modality	Feature Length	
Video	6	
Text It was really really funny	5	
Audio	10	

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

Hard (word-level) Alignment (prior approach)

- Cons:
- More supervision
 - (e.g. time intervals)
- More engineering effort

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

Pairwise Cross-modal Attention (Prior approach)

Cons:

- Only two modalities at a time
- Repeated many times for each modality pair
 --> Lots of model parameters

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

Graph:

- Add nodes freely
- Build edges freely

Challenges:

- Irregular lengths
- Misalignment
- Fusion of more than 2 modalities
- Long-term temporal dependency

Graph:

- Add nodes freely
- Build edges freely

Challenges:

- Irregular lengths
- Misalignment

- Fusion of more than 2 modalities
- Long-term temporal dependency

Graph:

- Add nodes freely
- Build edges freely

Method

Method: Node Construction

③ MTAG Graph Fusion and Pruning

Method: Close-up of Modal-Temporal Attention

Datasets

- IEMOCAP: Video Emotion Classification
 - Happy, sad, angry, neutral, etc.

- CMU-MOSI: Video Sentiment Analysis
 - Sentiment score $\in [-3, +3]$

Results: IEMOCAP

F1 Scores on Unaligned IEMOCAP

Results: CMU-MOSI

CTC + RAVEN Mult

MTAG (ours)

 $Acc_7 = 7$ -way classification accuracy $Acc_2 = 2$ -way (pos/neg) classification accuracy

Results on Unaligned CMU-MOSI (Cont.)

Sentiment Analysis Evaluation Metrics (MAE, Corr)

CTC + EF-LSTM	LF-LSTM	CTC + MCTN
CTC + RAVEN	MulT	MTAG (ours)

Results: Parameter Efficiency

Model	# Parameters		
MulT (previous SOTA)	2.24 M		
MTAG (ours)	0.14 M		

Table 4: Number of model parameters (M = Million).

Qualitative Analysis

(a) Text-to-vision edge attention weights.

Ablation Study

Ablation	$\mathbf{Acc}_2 \uparrow$	F1 ↑	$\mathbf{MAE}\downarrow$	
Edge T	ypes			
No Edge Types	82.4	82.5	0.937	}—
Multimodal Edges Only	85.6	85.7	0.859	
Temporal Edges Only	85.2	85.2	0.887	ſ
Prun	ing			
Random Pruning Keep 80%	75.5	74.5	1.080	
No Pruning	84.7	84.7	0.908	
Modal	ities			
Language Only	81.5	81.4	0.911	
Vision Only	57.0	57.1	1.41	
Audio Only	58.1	58.1	1.37	
Vision, Audio	62.0	59.2	1.360	
Language, Audio	85.9	85.7	0.915	
Language, Vision	86.6	86.6	0.896	
Full Model, All Modalities	87.0	87.0	0.859	Y

Finding 1:

Adding modality and temporal specific edges improves performance

Ablation Study

Ablation	$\mathbf{Acc}_{2}\uparrow$	F1 ↑	$\mathbf{MAE}\downarrow$	
Edge Types				
No Edge Types	82.4	82.5	0.937	
Multimodal Edges Only	85.6	85.7	0.859	
Temporal Edges Only	85.2	85.2	0.887	
Pruning				
Random Pruning Keep 80%	75.5	74.5	1.080	
No Pruning	84.7	84.7	0.908	ſ
Modalities				5
Language Only	81.5	81.4	0.911	
Vision Only	57.0	57.1	1.41	
Audio Only	58.1	58.1	1.37	
Vision, Audio	62.0	59.2	1.360	
Language, Audio	85.9	85.7	0.915	
Language, Vision	86.6	86.6	0.896	
Full Model, All Modalities	87.0	87.0	0.859	Y

Finding 2:

Top-K% pruning improves performance; Random pruning decreases performance

Ablation Study

Ablation	$\mathbf{Acc}_2\uparrow$	$F1\uparrow$	$\mathbf{MAE}\downarrow$	
Edge Types				
No Edge Types	82.4	82.5	0.937	
Multimodal Edges Only	85.6	85.7	0.859	
Temporal Edges Only	85.2	85.2	0.887	
Pruning				
Random Pruning Keep 80%	75.5	74.5	1.080	
No Pruning	84.7	84.7	0.908	
Modal	Modalities			
Language Only	81.5	81.4	0.911	\mathbf{F}
Vision Only	57.0	57.1	1.41	シ
Audio Only	58.1	58.1	1.37	J
Vision, Audio	62.0	59.2	1.360)
Language, Audio	85.9	85.7	0.915	\vdash
Language, Vision	86.6	86.6	0.896	J
Full Model, All Modalities	87.0	87.0	0.859	Y

Finding 3:

Zanguage is the most helpful modality

MTAG increases its performance as more modalities are provided

Summary of Contributions

- A new pipeline to model unaligned multimodal sequence data
- A new graph convolution operation called MTAG fusion
- State-of-the-art results on two datasets
- Much fewer model parameters than previous SOTA

MTAG: Modal-Temporal Attention Graph for Unaligned Human Multimodal Language Sequences

Paper

Code