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Presentation Outline

• Motivation: Challenges in multimodal language learning
• Method
• Datasets
• Results
• Analysis
• Applications
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What is multimodal sequence?
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What is multimodal sequence?

• Data that is sequential and recorded in multiple channels
• Examples:
• Video
• Healthcare: Vital signals
• Autonomous vehicles
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Why do we care about multimodal sequence?
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Why do we care about multimodal sequence?
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Abundant data



Why do we care about multimodal sequence?
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Abundant data Diverse applications

Emotion detectionDisease prediction



Multimodal Sequence Challenges

• Irregular lengths
• Misalignment
• Fusion of more than 2 modalities
• Long-term temporal dependency
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Multimodal Sequence Challenges

• Irregular lengths
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Hard (word-level) Alignment (prior approach)

Cons:
• More supervision

• (e.g. time intervals)
• More engineering effort



Multimodal Sequence Challenges

• Irregular lengths
• Misalignment
• Fusion of more than 2 modalities
• Long-term temporal dependency
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Pairwise Cross-modal Attention (Prior approach)

Cons:
• Only two modalities at a time
• Repeated many times for each modality pair 

--> Lots of model parameters
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Why Use Graph for Multimodal Sequence?
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Why Use Graph for Multimodal Sequence?

Challenges:
• Irregular lengths
• Misalignment
• Fusion of more than 2 modalities
• Long-term temporal dependency
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Graph:
• Add nodes freely
• Build edges freely✅
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Method
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Method: Node Construction
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Method: Edge Construction
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Method: Fusion & Pruning
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③MTAG Graph Fusion and Pruning

Fuse Prune

Fuse Prune Remove 
Isolated Node

× 𝑁 Layers

Combine information
from different modalities 

and temporalities

• Reduce number of edges
• Reduce computation/memory
• Regularize training
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Datasets

• IEMOCAP: Video Emotion Classification
• Happy, sad, angry, neutral, etc.

• CMU-MOSI: Video Sentiment Analysis
• Sentiment score ∈ [-3, +3]
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Results: IEMOCAP
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Results: CMU-MOSI
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Results: Parameter Efficiency

27



Qualitative Analysis
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Ablation Study
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Finding 1:
Adding modality and temporal 
specific edges improves performance



Ablation Study
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Finding 2:
Top-K% pruning improves performance;
Random pruning decreases performance



Ablation Study
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Finding 3:
Language is the most helpful modality

MTAG increases its performance as more 
modalities are provided



Summary of Contributions

• A new pipeline to model unaligned multimodal sequence data
• A new graph convolution operation called MTAG fusion
• State-of-the-art results on two datasets
• Much fewer model parameters than previous SOTA
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Paper Code

MTAG: Modal-Temporal Attention Graph for 
Unaligned Human Multimodal Language Sequences


